
Implementing the Spirit of SQL-99
Paul Brown

INFORMIX Software
20th Floor, 300 Lakeside Drive.

OAKLAND, CA , 94612. USA .
01-510-628-3765

brown@informix.com

ABSTRACT
This paper describes the current INFORMIX IDS/UD release
(9.2 or Centaur) and compares and contrasts its functionality
with the features of the SQL-99 language standard. The IDS/UD
product supports most of the innovative features of the new
standard, although at this time INFORMIX’s query language
implements a slightly variant syntax. In addition, we review the
experience of early technology adopters working with object-
relational DBMSs (ORDBMS). We argue that their difficulties
indicate that the SQL-99 language standard as it currently stands
is going to be largely irrelevant, in that developers will not use it
when implementing next-generation information systems, and
DBMS vendors and their partners will need to go beyond it in
their products.

Keywords
INFORMIX, object-relational database, SQL, language
standards.

1. INTRODUCTION
Release 9.2 of the INFORMIX Dynamic Server with Universal
Data option (IDS/UD) implements most of the data model
features standardized in the SQL-99 language. In this
presentation we provide an overview of this functionality. We
include brief detours describing how two of these features -- the
extensible language manager and multi-representational types –
are implemented.

However, an interesting lesson of our first two years shipping an
object-relational DBMS has been that SQL-99 style development
presents a series of quite different challenges from what was
encountered with SQL-92. We summarize these difficulties, and
argue that what they indicate is that the SQL-99 language
standard will be largely irrelevant to developers of next-
generation systems.

2. INFORMIX IDS/UD
The following table presents a partial list of the interesting SQL-

99 features supported by IDS/UD. INFORMIX was among the
first vendors to provide extensibility and object-oriented data
model as features its DBMS. At the time we began developing
this functionality we focused on implementing the then draft
SQL-3 standard. Since then the syntax of the standard has
changed substantially.

This leaves us in the position of supporting almost all of the new
features of SQL-99 through slightly non-standard syntax. For
obvious market reasons, we anticipate rapidly moving our
ORDBMS query language closer to the standard now that it is a
more fixed target.

User-defined Types (UDTs)

• SQL-92 Built-in Types and Expressions

• ROW Type

• COLLECTION Type

• DISTINCT Type

User-defined Routines (UDRs)

• EXTERNAL Routines in ‘C’, Java (SQLJ Part 1) and C++1

• Internal routines in INFORMIX Stored Procedure
Language(SPL)

• Mutator, Observer, Operator, Constructor expressions

• UDR Overloading

Inheritance and Polymorphism

• ROW TYPE Inheritance

• Table Inheritance

• Polymorphic Queries

Query Language Features

• COLLECTION Derived Tables

• Closed Query Expressions

Figure 1. Partial List of SQL-99 Features in INFORMIX 9.2

Many of the non-core aspects of the standard – like the SQL/MM
spatial data types and function, and the temporal extensions –
can be implemented using these features. For example, the SQL-
99 Period data type that represents a fixed interval in the time-
line is handled as a UDT. In order to support these features
efficiently IDS/UD provides interfaces that let extension
developers overload our data management services like sorting,
indexing, replication and so on.

1 On Microsoft platforms only.

2.1 Beyond the Standard
Release 9.2 of IDS/UD includes functionality that goes beyond
the standard in several areas. Therefore, INFORMIX is working
to affect the direction of the standard as it evolves. The following
list summarizes the additional, INFORMIX specific
functionality.

• Open Storage Manager Interfaces

• Extension Language Integration

• OPAQUE Types

• User-defined Aggregates

Figure 2. Extra-Standard Features of the 9.2 Release

3. Implementation Examples
In this section we present more detailed explanations of two
features: how IDS/UD handles UDRs implemented in multiple
language, and how we support data types of extremely variable
length.

3.1 Language Manager Extensibility
Developers using IDS/UD can implement extensions using a
variety of procedural languages: INFORMIX’s proprietary stored
procedure language, a semi-compiled language like Java, or ‘C’
compiled into shared library binaries. What is common to all of
these extensibility alternatives is that the user-defined code runs
within the same memory address space as the DBMS process.
This design achieves optimal performance because it minimizes
the overhead incurred when the ORDBMS invokes the user-
defined code.

Early in our design process we decided that the engine needed an
abstracted interface that would support the addition of multiple
language environments. This generalized extension mechanism
consists of a set of procedure calls – which must be implemented
in ‘C’ – to handle argument marshaling, procedure invocation,
return values and exceptions. Developers integrating fully ‘sand-
boxed’ environments like Java or Visual Basic must also map
system calls – requests for resources like memory, I/O and thread
management – to their IDS/UD equivalents.

The mechanism is general enough that it allows us to link the
JAVA.LIB library shipping with various Java distributions into
the DBMS address space. Our initial implementation of Java in
the database took a more orthodox approach by running the Java
virtual machine in its own address space and communicated with
it through shared memory. Tighter integration yielded significant
performance benefits. We are repeating the process for COM
interfaces on Windows™ systems.

1.2 Multi-representational Types
Managing variable length data types presents some difficult
problems. For example, one of the data types we manage in the
server is the SQL-99/MM st_polygon. In our
implementation, polygons representing US state and territory
boundaries vary in length by several orders of magnitude.
Boundaries for square states like Colorado and New Mexico are
72 bytes long, while boundaries for states like Texas and Maine
can take up hundreds of kilobytes. In the table below we present
a histogram of the number of points per boundary (at 1.4 degree
minimum edge).

Range of Points Number of States

Less than 10 25

10 to 20 26

20 to 40 7

40 to 80 6

80 to 160 3

More than 160 1

Figure 3. Histogram of Points in Geographic Boundaries

Efficient processing of queries involving spatial data requires a
two-phase approach. In phase one, we use an approximation –
usually a bounding rectangle – for a rough check to exclude
obviously false matches. Then we perform an exhaustive check
on the approximate matches in phase two. Storing data for
polygons like Texas in the table’s row multiplies scan times for
the entire data set. But storing all polygon data separately also
implies significant overhead, as the DBMS must visit the large
object storage to retrieve several smaller objects.

The solution is what we call a multi-representational type, which
is made possible through the OPAQUE type mechanism.
Developers implementing an extended type can use interfaces
provided by the server to specify a threshold value, and when the
object exceeds this limit the object’s data is moved to large-
object storage. In the st_polygon example we always store
the bound-box and some meta-data in the record, and optionally
page the polygon data into large-object storage, depending on its
size.

4. THE RELEVANCE OF SQL-99
A language standard is relevant to the extent that it is both
useful, and used. By useful, we mean the extent to which the
standard addresses the problems it is intended to solve;
portability of applications and of skill-sets. By used, we mean –
loosely – the extent to which it is adopted and followed by
vendors and application developers. In the remainder of this
paper, we argue that, based on the experience of our early
adopters, the SQL-99 standard is not useful when building
applications that include interesting UDTs, and will not be
widely used.

The intention of what follows is not to diminish the achievement
of SQL-99. The standard is a thorough, rigorous document: the
product of an enormous and well-intentioned effort. Also, it is
quite possible that ORDBMSs can be used as slightly more
general RDBMS systems; i.e. the advantages of SQL-99 are the
modularity and re-use that can be attributed to features like
ROW TYPES and inheritance and the extended types defined in
SQL-99/MM.

If SQL-99 has a failure it is that textual query languages and
procedural APIs – which were conceived in the days of character
terminals -- are no longer the most appropriate model to use
when addressing complex object management in an era

dominated by graphical user interfaces. Instead, developers
benefit from adopting a more component-centric view of the
overall information system, and using the ORDBMS as a
framework for these components.

In the following sections we describe several problems we have
encountered building information systems using extensible
DBMSs.

4.1 The Problem of Multiple Extensions
In SQL-92 databases the schema consists of a collection of inter-
dependent tables, each of which consists of a set of columns. The
SQL-92 language standardizes a simple type system for these
columns and a set of expressions for the query language. All that
the SQL-92 developer needs to know is their schema design and
a few hundred pages of a SQL textbook[2][6]. But in an
ORDBMS, the database includes a great many types and
functions. For example, the GIS extensions provided by
INFORMIX’s partners include about fifty data types, and
perhaps one thousand functions. A SQL-92 style developer using
an extensible DBMS is obliged to remember the correct spelling
of each of these function’s identifiers, their argument order, and
when several functions are combined into a single query
expression they also need to know the function’s return type.

As a result, working with SQL-99 is very hard. Developers using
the INFORMIX ORDBMS commonly request that we provide
some kind of schema browser that presents the database’s
schema objects – tables, columns, types and functions – in a
GUI. For example, consider developing a system that mixes
geographic types, digitized microscope image data and pattern
recognition functions in a single database. Queries against such a
system might be crafted by hand, but a far more efficient
alternative is for the ORDBMS vendor to provide a tool to do so
instead. This diminishes the utility of the standard for application
developers and vendors. Developers no longer need to rely on
their knowledge of what the standard says to write queries, and
vendors no longer need to adhere to it in order to be useful to
developers.

A variety of commercial and research systems have demonstrated
how graphical techniques can usurp much of the functionality of
a query language.[1][7] In these systems, and in tools like
INFORMIX-Visionary®, the interface generates queries and
displays their results without the user being aware what SQL
expressions are involved.

4.2 The Problem of the API
The current state of the art application programming interfaces
(APIs) are either embedded language approaches – ESQL/C,
embedded Java (SQLJ Part 0) – or call level interface APIs –
SQL-99/CLI[5], ODBC, JDBC. Either style is really only useful
when the type system of the DBMS has a close correspondence
to the type system of the host language program. With SQL-92
this is almost always true. Historically, the SQL language was
intended for embedding within COBOL or ‘C’, and more
recently 4GLs. The small number of exceptions – SQL’s
DECIMAL type has no obvious equivalent in ‘C’, for example --
are handled by the vendor’s client libraries.

But with SQL-99, the host language program may not know the
return types from a query until the ORDBMS executes it, and the

external programming language will almost certainly not know
what to do with the kinds of data that are returned by the
ORDBMS. For example, consider the following query:
 SELECT Histogram (E.Salary),
 E.Department
 FROM Employees E
 GROUP BY E.Department;

Figure 4. SQL-99 Style Query

In this example, the Histogram aggregate returns a complex
data type. The first problem is that the definition of this data type
may change between invocations of the query. In other words,
every ORDBMS query is a dynamic query. This is not an issue
with SQL-92 systems where every expression has standardized
properties. The second problem is that the language standard
does not (and should not) specify low-level data structures
(although, in cases like SQL-99/MM[4] spatial types binary
standards do exist). The standard does provide the means to map
or convert a server-side object into a client-side object. But for
tools vendors who will need to provide access to databases
containing user-defined types with arbitrary data structures such
mapping does not solve the problem.

All of the standard APIs are data-centric. That is, they are
designed to manage data values. But this is not enough with an
extensible DBMS. There needs to be a mechanism for the
ORDBMS to pass entire interfaces back to the host language:
that is, the means to manipulate query result objects on the client
side without the external program knowing a-priori what the
return results will be.2 A more useful ORDBMS API standard
would be component or object-centric, not just data-centric.

In order to implement systems using ORDBMSs, developers and
vendors will be obliged to go beyond the SQL-99 standard,
which gives no guidance in this regard.

4.3 The Problem of Porting SQL-99 Queries
A primary objective of a language standard is to provide
portability of applications and skill-sets between products. With
the same data set on two RDBMSs, the same queries will return
the same results. But our experience has been that even porting
applications between different extension libraries with our own
ORDBMS poses significant challenges.

The problem is more semantics than syntax. Queries that return
one result with one set of text extensions return different results
on another, even though the syntax is identical. For example,
given a library of medical articles, when one vendor’s extension
functions are asked to return all articles containing the concept
‘hypertension’ it might return 100 unordered articles in a few
seconds. The same query expression, using another vendor’s
extensions, may return 200 articles ordered by the degree of
conceptual relevance in a minute or two. Neither answer is
wrong.

2 JDBC 2.0 provides a means of mapping a query’s return result

to a Java class, and that class might be loaded into the VM
independently of the database interface.

What this indicates is that the SQL-99 standard cannot achieve
the goal of application portability between standards compliant
systems. Language standards fix syntax. Even developers who
manage to meet their application requirements while sticking
religiously to the letter of the standard will find their system
exhibits different functionality in different DBMSs.

4.4 The Problem of Architectural Diversity
ORDBMS products are more architecturally varied than RDBMS
products. Further, some of them include support for data
manipulation algorithms that are neither part of the standard
relational model, nor mentioned in the standard (sampling, on-
line aggregation, result-set size limits etc). Also, some ORDBMS
vendors have a strategic focus on business partnerships to supply
extensions to the core DBMS. It is in the interests of these third-
party creators of extensions that their products be differentiated
too. Both of these factors will motivate a divergence of database
functionality.

This indicates that ORDBMSs are likely to become increasingly
proprietary, and that developers will need to use these
proprietary extensions to achieve their development goals. The
set of common functionality, defined within the standard, will be
a tiny sub-set of what each ORDBMS provides. And developers
who restrict themselves to using it will not be the ones building
new systems.

5. DBMS INTERFACE DIRECTIONS
Over time, DBMS products have evolved considerably beyond
their original purpose, which was to store data and respond to
external queries. Modern RDBMSs include sophisticated active
DBMS facilities and can host procedural logic implementing
complex business processes. ORDBMS technology continues this
trend. It turns the DBMS into a component framework. The fact
that an ORDBMS includes scaleable, transactional data storage
functionality can be seen as entirely incidental. For example, we
are beginning to see our customers use the ORDBMSs as a
middle-ware server. In these circumstances, the query language
is simply a high-level notation for reasoning about the
components the system manages.

The alternative to a textual query language is a more abstracted
interface that presents developers and even end-users with
conceptual-level information system objects. They then combine
and manipulate these objects in the user-interface. All of the
logical principles that have guided DBMS interface design -- the
emphasis on a dynamic programming and declarative expressions
– and on supporting technologies – query processing and
optimization – remain relevant. The important point is that the
syntactical notation used to express these queries is entirely
hidden. It might well be based on SQL-99, but it need not be. A

precedent for this kind of usage pattern can be seen in CASE
tools that generate DDL for different RDBMSs, and report-writer
tools that generate DML. What matters to the developer or end-
user is the functionality of the interface. Less important is the
syntax of the SQL it generates.

6. CONCLUSION
In this paper we have briefly described the extent of
INFORMIX’s support for the SQL-99 language standard. The
IDS/UD product supports most of the innovative features of SQL-
99: user-defined types and functions, object features like
inheritance and polymorphism, and new query language features
like closure. Although INFORMIX’s syntax is a slight variation
on the standard’s syntax, we anticipate adapting to the standard
quite quickly.

The second part of this paper discussed several observations
about how developers are using SQL-99 style features, and
concluded that the language standard will not be useful to such
developers.

7. ACKNOWLEDGMENTS
Thanks to Mike Ubell and Charles Campbell, INFORMIX’s
representatives on the SQL standard committee, for their
comments and clarifications on the standard.

8. REFERENCES

[1] Bloesch, Anthony. C. and Halpin, Terry A. “ConQuer: A
Conceptual Query Language.” 15th Int. Conf. on Conceptual
Modelling. Berlin, Germany . 1996.

[2] Date, C. J. and Darwen, Hugh. A Guide to The SQL Standard
Third Edition. Addison-Wesley Publishing Company. Menlo
Park, CA. 1994.

[3] ISO Draft International Standard Database Language SQL –
Part 2: Foundation December, 1998.

[4] ISO Working Draft SQL Multimedia and Application
Packages: Part 2: Full-Text September 1995.

[5] ISO Working Draft Database Language SQL – Part 3: Call-
Level Interface July, 1998.

[6] Melton, Jim and Simon, Alan R. Understanding the New
SQL: A Complete Guide Morgan Kaufmann Publishers. San
Francisco, CA. 1993.

[7] Microsoft Access Version 97. Microsoft Corporation.
Redmond, Washington. 1997.

